<=
Classe terza
Classe quarta
Trigonometria =>
ESPRESSIONI GONIOMETRICHE ARCHI ASSOCIATI n°2
Prof. Mauro La Barbera
Utilizzando le regole degli archi associati, risolvere le seguenti espressioni goniometriche:
Controlla risposta
sen(π + α) – sen(π – α) + cos(π – α) – cos(π + α) =
?
− 4tgα
– 2senα
senα – 2cosα
0
1
senα
3tgα
2
sen(2π + α) + sen(π/2 + α) + cos(2π + α) + sen(3π/2 + α) – cos(– α) =
?
− 4tgα
– 2senα
senα – 2cosα
0
1
senα
3tgα
2
sen(2π – α) + cos(π/2 – α) + cos(2π – α) – sen(π/2 – α) – sen(– α) =
?
− 4tgα
– 2senα
senα – 2cosα
0
1
senα
3tgα
2
tg(π + α) + tg(2π – α) + tg(π – α) + ctg(π/2 – α) – 3ctg(3π/2 + α) =
?
− 4tgα
– 2senα
senα – 2cosα
0
1
senα
3tgα
2
ctg(π + α) + tg(π/2 – α) + 2tg(π/2 + α) – cos(π/2 + α) + sen(π + α) =
?
− 4tgα
– 2senα
senα – 2cosα
0
1
senα
3tgα
2
4sen(360° – α°) – 4cos(270° + α°) + sen²(360° + α°) + sen²(90° + α°) =
?
− 4tgα
– 2senα
senα – 2cosα
0
1
senα
3tgα
2
ctg(π + α) tgα − tg(π + α) ctg(π − α) =
?
− 4tgα
– 2senα
senα – 2cosα
0
1
senα
3tgα
2
tg(− α) + tg(π − α) + tg(2π − α) − ctg(π/2 − α) =
?
− 4tgα
– 2senα
senα – 2cosα
0
1
senα
3tgα
2
Controlla risposta
OK
<=
Classe quarta
Trigonometria =>